
TECHNICAL REPORT 04-02

Correctness Proof of the SBT method

Yutaka Sugawara and Kei Hiraki

October 20, 2004

Department of Information Science
Faculty of Science, University of Tokyo

7–3–1 Hongo, Bunkyo-Ku Tokyo, 113 Japan

TECHNICAL REPORT 04-02

TITLE
Correctness Proof of the SBT method

AUTHORS
Yutaka Sugawara, Mary Inaba, and Kei Hiraki

KEY WORDS AND PHRASES
string matching, FPGA, SBT, correctness proof

ABSTRACT
In this paper, we prove the correctness of the SBT method, which we proposed in a previous paper
[1]. SBT is a string matching method optimized for high-speed multi-stream packet scanning on
FPGA. The SBT method is capable of lightweight switching between TCP streams, and enables
easy implementation of multi-stream scanners. In addition, we achieved over 10Gbps string match-
ing bandwidth using a Xilinx XC2V6000 FPGA. In this paper, we present a correctness proof of the
SBT method, which we could not presented in the previous paper [1] due to the space limitation.

ANY OTHER IDENTIFYING INFORMATION OF THIS REPORT

DISTRIBUTION STATEMENT
This technical report is available ONLY via anonymous FTP from
ftp.is.s.u-tokyo.ac.jp (directory /pub/tech-reports).

SUPPLEMENTARY NOTES

REPORT DATE
October 20, 2004

TOTAL NO. OF PAGES
11

WRITTEN LANGUAGE
English

NO. OF REFERENCES
12

DEPARTMENT OF INFORMATION SCIENCE
Faculty of Science, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Correctness Proof of the SBT method

Yutaka Sugawara, Mary Inaba, and Kei Hiraki

1 Introduction

Recent technology has realized fast networks such as 10Gbit Ethernet and OC-768. To take
advantage of such high-speed networks, it is necessary to accelerate network applications. Part
of the applications requires intensive packet payload scanning. For example, in network intrusion
detection systems (NIDS), payload scanning to find suspicious patterns occupies the major part
of the computation time[2]. Other examples include Content-based billing, SPAM filtering,
and HTTP request distribution. To accelerate them, fast string matching is necessary. In the
matching, a set of byte strings (rules) is statically given, and occurrences of the strings in input
packet streams are checked.

When matching speed alone is important, hardware implementation is better than software
implementation. However, it is also necessary to update pattern rules. For example, in NIDS,
rules are frequently updated to cope with the patterns found in new intrusion methods. There-
fore, we cannot hard-wire rules because the rule update is impossible without replacing the hard-
ware. FPGA based implementation is a solution for string matching in hardware while allowing
the rules to be updated. When FPGAs are used, the rules can be changed by reconfiguration.
There are studies of string matching using FPGAs such as comparator based methods[3][4],
CAM based methods[5], non-deterministic automaton(NFA) based methods[6][7][8], determin-
istic finite automaton(DFA) based methods[9], Bloom Filter based methods[10], and Knuth-
Moris-Pratt(KMP) algorithm based methods[11]. They enabled high-speed string matching
while allowing the rules to be changed. For a high throughput under a limited clock speed, it
is important to process multiple input characters at once[3][4][8].

In TCP, a communication data stream is split into packets. Therefore, a target pattern may
span multiple packets. Such fragmented pattern cannot be discovered by a per-packet scan.
This is a serious problem in applications such as NIDS that require a complete scan. To avoid
the problem, it is necessary to scan TCP streams. However, existing FPGA based methods
cannot be used for scanning multiple streams because of the difficulty in switching between
streams.

In [1], we proposed a string matching method called suffix based traversing (SBT). SBT
is an extension of the Aho-Corasick algorithm[12], which uses table lookup in state transition.
Since a small number of state bits are used in the SBT method, lightweight stream switching
is enabled. The main points of extension for SBT are (1)processing multiple input bytes at
once, and (2)table size reduction. When the Aho-Corasick algorithm is naively extended to
process multiple bytes, a large lookup table is necessary. We solved this problem by reducing
the number of table input patterns. As a result, the large table is converted into smaller tables
and over 10Gbps scanning is enabled.

In the previous paper [1], we did not present the correctness proof of the SBT method
because of the space limitation, though it is mandatory for a complete algorithm description.
In this paper, we present the correctness proof.

In Section 2 we describe the SBT method. Section 4 presents the correctness proof of the
SBT method. We conclude this paper in Section 5.

1

’’ ’a’ aa ’aa’ a ’aaa’ b ’aaab’ b ’aaabb’

’ab’ b ’abb’

b

~a

~(a|b)

b a
b

aa

~a

a
~a

~(a|b)
output function

’ab’’aaab’

match outputnode

noneothers
’abb’, ’aaabb’’aaabb’

’abb’’abb’
’ab’’ab’

’ab’’aaab’

match outputnode

noneothers
’abb’, ’aaabb’’aaabb’

’abb’’abb’
’ab’’ab’

rules = { ’aaabb’, ’abb’, ’ab’ }

Figure 1: An example FSM of Aho-Corasick algorithm

2 Outline of SBT Method

2.1 Aho-Corasick Algorithm

In Aho-Corasick algorithm[12], a trie is built that contains all the rule strings. Then, the string
matching is performed using a state machine whose state is a node position of the trie. The
initial state is the root node of the trie. Each time a character of the string is input, the state
transits from the current node to the next node through the transition edge corresponds to the
input character1. The current state node corresponds to the longest suffix of the input string
up to this time.

The output function is defined for each state node. The output function indicates what
rule strings are matched when each state node is reached. Note that the output format of the
match results depends on the application2. We must change the output function according to
the output format. In this paper, we discuss only the state transition, and we do not discuss
the matching result output. Figure 1 is an example FSM used in Aho-Corasick algorithm.

2.2 Optimization of FSM Based Method

In the description of this paper, all the strings consist of 1 octet (8 bit) characters. When string
matching is performed using an FSM based method with state transition table lookup, we must
optimize the implementation in the following respects:

• Parallel processing of multiple input characters.

• Memory size reduction of the state transition tables.

The former is important to realize high matching throughput under a limited clock speed.
In an FSM based method, when the state transition table lookup is performed in an sequential
manner, it is impossible to process multiple characters in parallel. To process multiple characters
in parallel, it is necessary to change the implementation of state lookup mechanism.

The later is necessary for implementing the state transition tables using FPGA on-chip
memories. Since off-chip memories are slower than off-chip ones, high performance cannot
be achieved by off-chip memory implementations. In addition, when multiple characters are
processed in parallel, off-chip implementations are very difficult because many independent
memory chips are necessary.

1In Aho-Corasick algorithm, it is possible not to enumerate all the transition edges by using the failure
function. However, we use an implementation without the failure function because it is suitable for hardware
implementation since the processing amount of each cycle is constant.

2For example, in an application, just the longest matching rule string is output.

2

Parallelism

look-ahead

state0
a

state1
b

state2
c

state3
d

state4
e

state5
f

state6
g

state7
h

state8

state0
a

state1
b

state2
c

state3 state4
e

state5
f

state6
g

state7 state8

abcd efgh

state0 state4 state8 state12

state1 state5 state9

state2 state6

state3

state16

state13

state10

state7

a

b

c

e

f

g

abcd efgh

look-ahead

Aho-Corasick:

Idea of SBT:

time

Figure 2: Parallel processing of multiple characters using look-ahead tables

state0
a

state1 state2
c

state3 state4
e

state5 state6
g

state7

ab efabcd

state8
i

state9 state10
k

state11 state12
m

state13 state14
o

state15

ij mnijklabcdefgh

ijklmnop

8C look
-ahead

state

4C look
-ahead

2C look
-ahead

1C look-ahead

2C look
-ahead

1C look-ahead

1C look-ahead

1C look-ahead

Figure 3: Tree-wise state look-ahead

2.3 Parallel Processing of Characters using Look-ahead Tables

In SBT method, state look-ahead table is used to get a state after a specified number
of characters. We call a state look-ahead table that tells a state after n characters as n-
characters look-ahead table. The n-characters look-ahead table receives the current state and
the succeeding n characters, and returns the state after the n characters3. Using the look-ahead
tables, multiple state transitions can be calculated in parallel. For example, in Figure 2, 4 state
transitions are calculated in parallel using a 4-characters look-ahead table.

In an implementation like Figure 2, the calculation latency is O(w) when w characters
are processed in parallel. To reduce the latency to O(log w), a tree-wise state look-ahead is
performed in SBT method, as shown in Figure 3. Though the w can be an positive integer that
is not a power of 2, in this paper, we limit the w to a power of 2 for simplicity.

2.4 Memory Usage Reduction

2.4.1 Input pattern classification

One naive implementation of n-characters state look-ahead table is to lookup a table of 2b+8w

entries using a b + 8w bits value that is the concatenation of the current state ID and the w

31-characters look-ahead table is state transition table itself.

3

’aa’→0
’ab’→1
’bb’→2
’*a’→3
’**’→4

longest suffix
ID calculation

input character 1 ’’’a’’abb’’ab’’aaa’’a’

’’
’’
’’
’’
’’
’’

’’

4
*

’ab’
’ab’
’ab’

’aaab’
’ab’

’aaab’

’ab’

1
ab

’’
’’
’’

’aaabb’
’’

’abb’

’’

2
bb

’a’
’a’
’a’
’a’
’a’
’a’

’a’

3
a

’aa’
’aa’
’aa’
’aaa’
’aa’
’aaa’

’aa’

0
aa

’aaabb’
’aaab’
’abb’
’aaa’
’ab’
’aa’

’’

suffix ID
state

’’’a’’abb’’ab’’aaa’’a’

’’
’’
’’
’’
’’
’’

’’

4
*

’ab’
’ab’
’ab’

’aaab’
’ab’

’aaab’

’ab’

1
ab

’’
’’
’’

’aaabb’
’’

’abb’

’’

2
bb

’a’
’a’
’a’
’a’
’a’
’a’

’a’

3
a

’aa’
’aa’
’aa’
’aaa’
’aa’
’aaa’

’aa’

0
aa

’aaabb’
’aaab’
’abb’
’aaa’
’ab’
’aa’

’’

suffix ID
state

suffix
ID

current state

2-characters state look-ahead table

input character 2

Figure 4: State look-ahead table lookup using suffix pattern ID

3’*a’
4’**’

2’bb’
1’ab’
0’aa’

3’*a’
4’**’

2’bb’
1’ab’
0’aa’

7(’****’)
6(’***a’)
7(’****’)
5(’**ab’)
4(’**aa’)
3(’*abb’)
2(’*aaa’)
1(’aabb’)
0(’aaab’)
2(’*aaa’)

0(’aa’)x3(’*a’)
2(’bb’)x3(’*a’)
0(’aa’)xall
1(’ab’)xall
2(’bb’)xall
3(’*a’)xall

x

x
x
x

4(’**’)

2(’bb’)
1(’ab’)
0(’aa’)

0(’aa’)

all

0(’aa’)
0(’aa’)

7(’****’)
6(’***a’)
7(’****’)
5(’**ab’)
4(’**aa’)
3(’*abb’)
2(’*aaa’)
1(’aabb’)
0(’aaab’)
2(’*aaa’)

0(’aa’)x3(’*a’)
2(’bb’)x3(’*a’)
0(’aa’)xall
1(’ab’)xall
2(’bb’)xall
3(’*a’)xall

x

x
x
x

4(’**’)

2(’bb’)
1(’ab’)
0(’aa’)

0(’aa’)

all

0(’aa’)
0(’aa’)input character 1

3’*a’
4’**’

2’bb’
1’ab’
0’aa’

3’*a’
4’**’

2’bb’
1’ab’
0’aa’

suffix
ID

suffix
ID

suffix
ID

Length 4
suffix ID combination table

Length 2
suffix ID combination table

* Upper rule has higher priority

input character 2

input character 3

input character 4

Figure 5: Hierarchical calculation of suffix ID

input characters (b is the bit width of the state ID). However, the drawback of this method is
that the memory usage increases rapidly as the w increases. For example, when w = 8, the
number of the table entries is more than 264. Therefore, the implementation is difficult.

However, lookup tables have a redundancy that it returns a non-initial state only when
the input characters have limited suffix patterns. We can reduce the memory size using the
redundancy. For example, in the 2-characters lookup table of the rules shown in Figure 1,
though the total number of 2-character input patterns is 216, the table returns a non-initial
state only when a suffix of the input character is ’aa’，’ab’，’bb’， or ’a’.

Therefore, we can reduce the size of the lookup tables by classifying the input character
patterns based on its suffix pattern and looking up the look-ahead table using the suffix ID,
as shown in Figure 4. In the example of Figure 4, the number of the columns is reduced from
216 to 5.

The suffix ID calculation is performed in an hierarchical manner using suffix ID combi-
nation tables, as shown in Figure 5. First, IDs are assigned to the necessary suffix patterns
of length k strings for k = 2, 4, 8, . . . , w. A k-characters suffix ID combination table receives
two suffix IDs of length k/2 strings, and returns the suffix ID of the length k string that is the
concatenation of the two k/2 length strings. Using the hierarchical suffix ID calculation, the
table size is reduced.

2.4.2 Table size reduction using indirect pointers

Even when the number of columns of the look-ahead tables are reduced using suffix IDs, the
look-ahead tables have a redundancy that each row has a value that appears frequently. For
example, in Figure 4, ’aa’ appears frequently in the column 0(’aa’), and ’’ appears frequently
in the column 2(’bb’). The suffix ID combination tables have a similar redundancy. We can
reduce the table size using the redundancy, as shown in Figure 6. First, the default value

4

IHGFdefault

1

1

E

B

2

D

3

C

A

0

3

2

0

column
row

IHGFdefault

1

1

E

B

2

D

3

C

A

0

3

2

0

column
row

A
+

=?

B
C D

E

A C B E D

1→3
1→2

don’t
care→1

0→0

1→3
1→2

don’t
care→1

0→0

(3,E)→3
(2,D)→4

(0,B)→2
(2,C)→1
(0,A)→0

(3,E)→3
(2,D)→4

(0,B)→2
(2,C)→1
(0,A)→0

I→3
H→2
G→1
F→0

I→3
H→2
G→1
F→0 1

0

row pointer
table

defualt
value table

row elemnt table
(row ID, value)

row ID

value

row ID

column ID
output

Figure 6: Table size reduction using row pointers

table is built that holds the value that appears most frequently for each row. Next, the original
table is decomposed into rows, and the column elements that differ from the default table values
are stored in the row element table. The owner row ID is stored for each element in the row
element table. Finally, the row pointer table is built that holds the starting index of each row
in the row element table. Each empty element of the upside-left table in Figure 6 is identical
to the default value of the column.

In a table lookup, the row pointer table is looked up using the row index. Simultaneously,
the default value table is looked up using the column ID. Then the column ID is added to the
row pointer to make the index of the row element table. The row element table is looked up
using the index. The returned row ID is compared with the input row ID. When they matched,
the value in the row element table is output. Otherwise, since the value of the row element
table is invalid, the value of the default value table is output.

3 Formal Algorithm Description of SBT Method

We denote the w input bytes as a w bytes string pin. Let P be the set consisting of all the rule
strings pi. The character indices of strings start from 0. The length of the string p is written as
|p|. We write the concatenation of strings p and p′ as p :: p′. substr(p, i, j) is the j characters
substring of p starting from position i, and prefix(p, k) = substr(p, 0, k). We write p � p′

when the string p is p′ itself or a suffix of p′. IN(X, p) is the IN of the longest string p′ in X
which satisfies p′ � p.

Variables and Tables T = {p | p � pi(pi ∈ P)} .

Ik =
{ all the byte characters when k = 1⋃

i,j,l(l<k)(substr(pi, j, k) ∪ prefix(pi, l)) when k = 2, 4, 8, · · · , w
for k = 2, 4, 8, · · · , w and p, p′ ∈ Ik/2,

Ck(IN(Ik/2, p), IN(Ik/2, p
′)) =

{
IN(Ik, p

′) when |p′| < k/2
IN(Ik, p :: p′) when |p′| = k/2

for k = 1, 2, 4 · · · , w and i = 0, k, 2k, · · · , w − k and p ∈ Ik and s ∈ T ,

m(k, i) =
{
IN(I1, substr(pin, i, 1)) when k = 1
Ck(m(k/2, i),m(k/2, i + k/2)) when k ≥ 2

NSk(IN(T, s), IN(Ik, p)) =
{
IN(T, p) when |p| < k
IN(T, s :: p)) when |p| = k

T is the nodes of the rule string trie. Ik is the input suffixes for NSk table. Ta-
ble Ck tells the IN of the longest suffix of given 2 suffixes’ concatenation. m(k, i) is
IN(Ik, substr(pin, i, k)), the IN of the longest suffix of a portion of pin. Table NSk tells
the state change after k characters.

5

pin[3] C2

C2

C4m(2,2)

m(2,0)

NS4 S

NS2

NS1

NS1

m(4,0) r(3)

r(2)

r(1)

r(0)

pin[2]

pin[1]

pin[0]

<=u?

match
flags

match numbers

<=u?
<=u?
<=u?

mt(3)
mt(2)
mt(1)
mt(0)

suffix calculator state manager

Figure 7: Structure of the pattern matcher when w = 4

Static Preparation Make T , Ik from given P and assign INs. The INs of the elements in I1

are their character codes. In the IN assignment of T , the elements which match some pi

(i.e. {p | p ∈ T and pi � p for some pi}) are numbered first, and then the other elements
are numbered, in increasing order. Let u be the maximum IN of the elements in T which
match some pi. Then, calculate lookup tables Ck and NSk.

Input In each cycle, w characters of stream data are input. Let pin(t) be the w input characters
of the t-th clock cycle.

Output Let qi = pin(0) :: · · · :: pin(t − 1) :: prefix(pin(t), i). In each cycle, for each qi, the
following are output: (1) r(i) : IN(T, qi), i.e. the IN of the longest string in T that matches
qi, and (2) mt(i) : A match flag which indicates whether qi matches some pj.

Algorithm Procedure Let S be a state variable which holds IN(T, pin(0) :: · · · :: pin(t − 1)).
In each clock, do following using lookup tables:

1. Calculate each m(k, i) from the input pin(t).

2. Calculate r(i) (i = 0, ..., w − 1) recursively: r(0) = S,
r(k(2l + 1)) = NSk(r(2kl),m(k, 2kl)) k = 1, 2, 4, · · · , wk(2l + 1) < w

3. mt(i) = true if r(i) ≤ u. Otherwise, mt(i) = false.

4. Assign the next state NSw(S,m(w, 0)) to S

4 Correctness Proof

In the following description, p, p′, q, q′, r, s are strings, and X is a set of strings.

Definition 1
LS(X, p) is the longest string p′ in X which satisfies p′ � p.

Following corollaries are immediately derived from the definition of the LS function.

Corollary 1
p′ � p → |p′| ≤ |p|

Corollary 2
LS(X, p) ∈ X

Corollary 3
p � q ∧ q � r → p � r

6

Corollary 4
p � q ↔ p :: r � q :: r

Corollary 5
LS(X, p) � p

Proposition 1
p′ � p ∧ p � p′ → p = p′

Proof
From Corollary 1, |p| = |p′| is derived. By the definition of the � operator, |p| = |p′| is satisfied
only when p = p′

Proposition 2
p � p′, p′ ∈ X → LS(X, p) � p′

Proof
Since p � p′, LS(X, p) is p′ itself or a string that contains p′ as a suffix. Therefore, LS(X, p) � p′

Proposition 3
p ∈ X → LS(X, p) = p

Proof
By putting p = p′ in Proposition 3, LS(X, p) � p is derived. By Corollary 5, LS(X, p) � p
stands. Therefore, using Proposition 1, LS(X, p) = p is derived

Corollary 6
LS(X,LS(X, p)) = LS(X, p)

Proof
Because of Corollary 2, LS(X, p) ∈ X. Therefore, from Proposition 3, LS(X,LS(X, p)) =
LS(X, p) is derived

Proposition 4
p � p′ → LS(X, p) � LS(X, p′)

Proof
By Corollary 5, p′ � LS(X, p′) stands. Therefore, from Corollary 3, p � LS(X, p′) is derived.
By Corollary 2, LS(X, p′) ∈ X stands. Therefore, from Proposition 2, LS(X, p) � LS(X, p′) is
derived

Proposition 5
p � p′ � LS(X, p) → LS(X, p′) = LS(X, p)

Proof
When p � p′ � LS(X, p), using Proposition 4, LS(X, p) � LS(X, p′) � LS(X,LS(X, p)) is
derived. Therefore, by Corollary 6, LS(X, p) � LS(X, p′) � LS(X, p) stands. Therefore, from
Proposition 1, LS(X, p) = LS(X, p′) is derived.

Lemma 1
For k = 2, 4, 8, · · · , w,
Ck(IN(Ik/2, p), IN(Ik/2, p

′)) = IN(Ik, p :: p′) where |p| = |p′| = k/2.

7

Proof
Let q = LS(Ik/2, p), q′ = LS(Ik/2, p

′), and r = LS(Ik, p :: p′). By definition of IN, IN(Ik/2, p) =
IN(Ik/2, q) and IN(Ik/2, p

′) = IN(Ik/2, q
′).

• When |r| ≥ k/2
r � p′ stands. Therefore we can put r = rp :: p′, where rp = prefix(r, |r| − k/2).
Because of the definition of Ik and Ik/2, rp, p

′ ∈ Ik/2 stands. Therefore, from Proposition
3, q′ = LS(Ik/2, p

′) = p′ is derived.

Since p � rp and rp ∈ Ik/2, from Proposition 2, q = LS(Ik/2, p) � rp is derived. Therefore,
by Corollary 4, q :: q′ = q :: p′ � rp :: p′ = r = LS(Ik, p :: p′). Since p � q, by Corollary 4,
p :: p′ = p :: q′ � q :: q′ stands. Therefore, from Proposition 5, LS(Ik, p :: p′) = LS(Ik, q ::
q′) is derived.

Therefore, since |q′| = |p′| = k/2, Ck(IN(Ik/2, p), IN(Ik/2, p
′)) = Ck(IN(Ik/2, q), IN(Ik/2, q

′)) =
IN(Ik, q :: q′) = IN(Ik, p :: p′).

• When |r| < k/2
p′ � r stands.

– When |q′| = k/2
Since q′ = p′, 4, p :: p′ = p :: q′ � q :: q′ stands. Furthermore, q :: q′ > q′ =
p′ > r = LS(Ik, p :: p′). Therefore, by Corollary 3, q :: q′ > LS(Ik, p :: p′) stands.
Therefore, from Proposition 5, LS(Ik, q :: q′) = LS(Ik, p :: p′) is derived. Since
|q′| = k/2, Ck(IN(Ik/2, p), IN(Ik/2, p

′)) = Ck(IN(Ik/2, q), IN(Ik/2, q
′)) = IN(Ik, q ::

q′) = IN(Ik, p :: p′).

– When |q′| < k/2
By the definition of Ik and Ik/2, r ∈ Ik/2 stands. Since p′ � r, by Proposition 2,
q′ = LS(Ik/2, p

′) � r = LS(Ik, p :: p′) stands. Furthermore, since p :: p′ � p′ � q′, p ::
p′ � q′ stands. Therefore, by Proposition 5, LS(Ik, q) = LS(Ik, p :: p′) stands. Since
|q′| < k/2, Ck(IN(Ik/2, p), IN(Ik/2, p

′)) = Ck(IN(Ik/2, q), IN(Ik/2, q
′)) = IN(Ik, q

′) =
IN(Ik, p :: p′)

Lemma 2
For k = 1, 2, 4, · · · , w,
NSk(IN(T, s), IN(Ik, p)) = IN(T, s :: p).

Proof
The Lemma is proved in a way similar to Lemma 1.

Lemma 3
For k = 1, 2, 4, · · · , w and i = 0, k, 2k, · · · , w − k, m(k, i) = IN(Ik, substr(pin, i, k)).

Proof
We prove the Lemma by a derivation on k.

• When k = 1
By the definition, m(k, i) = m(1, i) = IN(I1, substr(pin, i, 1). Therefore, the Lemma
stands.

• When the Lemma stands for k = k′/2 (k′ ≥ 2)
By the assumption of the derivation, m(k, i) = Ck′(m(k′/2, i),m(k′/2, i+k′/2)) = Ck′(IN(Ik′/2, substr(pin, i,
k′/2, k′/2))). Therefore, by Lemma 1, m(k, i) = IN(Ik′ , substr(pin, i, k′/2) :: substr(pin, i+

8

k′/2, k′/2)) = IN(Ik′ , substr(pin, i, k′) stands. Therefore, the Lemma also stands for
k = k′.

Lemma 4
In t-th clock cycle, S = IN(T, pin(0) :: pin(1) :: · · · :: pin(t − 1)).

Proof
We prove the Lemma by a derivation on t

• When t = 0
The Lemma stands since the S is initialized to IN(T, ′′).

• When the Lemma stands for t = t′ − 1
By the assumption of the derivation, in (t′ − 1)-th clock cycle, S = IN(T, pin(0) :: pin(1) ::
· · · :: pin(t′ − 2)). Since m(w, 0) = IN(Iw, pin) stands by Lemma 3, in t′-th clock cycle,
S = NSw(IN(T, pin(0) :: pin(1) :: · · · :: pin(t′ − 2)), IN(Iw, pin(t′ − 1))). Therefore, by
Lemma 2, S = IN(T, pin(0) :: pin(1) :: · · · :: pin(t′ − 1)). Thus, the Lemma also stands
when t = t′

Finally, we show that the SBT method always outputs correct pattern IDs by proving the
following theorem.

Theorem 1
For i = 1, 2, 3, · · · , w, (A) r(i) is uniquely defined, and (B) In t-th clock cycle, r(i) = IN(T, pin(0) ::
pin(1) :: · · · :: pin(t − 1) :: substr(pin(t), 0, i)).

Proof
For i = 0, r(0) is uniquely defined as r(0) = S = IN(T, pin(0) :: pin(1) :: · · · :: pin(t − 1) ::
substr(pin(t), 0, 0)). Therefore, both (A) and (B) stand.

For other i, we prove the theorem by proving that the following lemma stands for all j(0 ≤
j ≤ log w − 1) by a derivation on j.

(A) and (B) stands for all the integers i that satisfies num2s(i) = j, where the num2s
function returns the number of 2’s the argument integer has as the primary factors.

Since 2l + 1 is an odd number in the definition of r(i), i = k(2l + 1) stands only when k =
2num2s(i). Since the k is uniquely determined, the value of the l is also uniquely determined(l =
(i/k − 1)/2). Therefore, the combination of k and l that satisfies i = k(2l + 1) is unique.
Therefore, r(i) is defined at most one time for each i. Thus, we can prove (A) by simply
showing that each r(i) is really defined.

• When j = log w − 1
Only i = w/2 satisfies num2s(i) = j. For this i, i = k(2l + 1) is satisfied when
k = w/2 and l = 0. Therefore, r(w/2) = NSw/2(r(2 ∗ w/2 ∗ 0),m(w/2, 2 ∗ w/2 ∗ 0)) =
NSw/2(r(0),m(w/2)) = NSw/2(S, IN(Iw/2, substr(pin(t), 0, w/2)) = NSw/2(IN(T, pin(0) ::
pin(1) :: · · · :: pin(t − 1)), IN(Iw/2, substr(pin(t), 0, w/2)) = IN(T, pin(0) :: pin(1) :: · · · ::
pin(t − 1)) :: substr(pin(t), 0, w/2)). Thus (B) is satisfied. Furthermore, since r(0) is
uniquely defined, (A) is satisfied.

• When (A) and (B) is satisfied for j > j′

For each i such that num2s(i) = j′, in the definition of r(i), i = k(2l + 1) stands only
when k = 2j′ . Since num2s(2kl) = num2s(2 · 2j′l) = num2s(2j′+1l) ≥ j′ + 1, by the

9

assumption of the derivation, (A) and (B) stands for i = 2kl. Therefore, for each i such
that num2s(i) = j′,

r(i) = r(k(2l + 1))
= NSk(r(2kl),m(k, 2kl))
= NSk(IN(T, pin(0) :: pin(1) :: · · ·

:: pin(t − 1) :: substr(pin(t), 0, 2kl)), IN(Ik, substr(pin(t), 2kl, k)))
= IN(T, pin(0) :: pin(1) :: · · ·

:: pin(t − 1) :: substr(pin(t), 0, 2kl) :: substr(pin(t), 2kl, k))
= IN(T, pin(0) :: pin(1) :: · · ·

:: pin(t − 1) :: substr(pin(t), 0, k(2l + 1)))

stands. Therefore, both (A) and (B) is satisfied for j = j′.

5 Concluding Remarks

In this paper, we have presented the correctness proof of SBT method [1]. Therefore, the
algorithm description of SBT method is now complete. However, we must further analyze
the SBT method in respects including the worst case memory usage and the optimal packing
method of row elements into a row element table. These aspects are important for a practical
use of SBT method. We will present the analysis as our future work.

Acknowledgements

This research is partially supported by the Special Coordination Fund for Promoting Science and
Technology, CREST project of Japan Science and Technology Corporation, and 21st century
COE project of Japan Society for the Promotion of Science.

References

[1] Y. Sugawara, M. Inaba, K. Hiraki, “Over 10gbps string matching mechanism for multi-
stream packet scanning systems,” in Proc. of 14th Intl. Conf. on Field Programmable Logic
and Applica tions(FPL ’04), August 2004.

[2] C. J. Coit, S. Staniford, J. McAlerney, “Towards Faster String Matching for Intrusion De-
tection or Exceeding the Speed of Snort,” in DISCEXII, DARPA Information Survivability
conference and Exposition, 2001.

[3] Y. H. Cho, S. Navab, W. H. Mangione-Smith, “Specialized Hardware for Deep Network
Packet Filtering,” in Proc. of 12th Intl. Conf. on Field Programmable Logic and Applica-
tions(FPL ’02), September 2002.

[4] I. Sourdis, D. Pnevmatikatos, “Fast, Large-Scale String Match for a 10Gbps FPGA-based
Network Intrusion Detection System,” in Proc. of 13th Intl. Conf. on Field Programmable
Logic and Applications(FPL ’03), September 2003.

10

[5] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, V. Hogsett, “Granidt: Towards
Gigabit Rate Network Intrusion Detection Technology,” in Proc. of 12th Intl. Conf. on
Field Programmable Logic and Applications(FPL ’02), September 2002.

[6] R. Sidhu, V. K. Prasanna, “Fast regular expression matching using fpgas,” in Proc. of 9th
IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM’01), April –
May 2001.

[7] B. L. Hutchings, R. Franklin, D. Carver, “Assisting network intrusion detection with recon-
figurable hardware,” in Proc. of 10 th Annual IEEE Symp. on Field-Programmable Custom
Computing Machines (FCCM’02), pp. 111–120, September 2002.

[8] C. Clark, D. Schimmel, “Scalable pattern matching for high speed networks,” in Proc. of
12th IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM’04), April
2004.

[9] J. Moscola, J. Lockwood, R. P. Loui, M. Pachos, “Implementation of a content-
scanning module for an internet firewall,” in Proc. of 11th Annual IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM’03), pp. 31 – 38, April 2003.

[10] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, J. Lockwood, “Deep packet inspection
using parallel bloom filters,” in Proc. of 11th IEEE Symp. on High Performance Intercon-
nects (HotI ’03), pp. 44 – 51, August 2003.

[11] Z. K. Baker, V. K. Prasanna, “Time and Area Efficient Pattern Matching on FPGAs,”
in Proc. of the 2004 ACM/SIGDA 12th Intl. Symp. on Field programmable gate ar-
rays(FPGA’04), pp. 223–232, February 2004.

[12] A. V. Aho, M. J. Corasick, “Efficient String Matching : An Aid to Bibliographic Search,”
Communications of the ACM, vol. Vol. 18, pp. 333 – 340, June 1975.

11

